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A new approach to describe the tensile 
stress-strain curve of a glassy polymer 

J.-C. BAUWENS 
Physique des Matkriaux de Synthese, UniversitO Libre de Bruxe//es, Bruxe/les, Belgium 

The tensile stress-strain curve of a glassy polymer is compared to the response of a 
rheological system including a generalized non-linear Maxwell model. The treatment 
assumes that throughout the course of deformation, some structure initially present in 
the polymer is destroyed and that the initial spectrum of the Maxwell elements is 
converted to another spectrum. A law of transformation of these spectra as a function 
of deformation is proposed while their expression is assumed to be analogous to that of 
the spectrum of a structureless material, experimentally determined. Data are found to 
be fully consistent with the proposed treatment. 

1. Introduction 
The purpose of this paper is to compare the tensile 
stress-strain curve obtained for a glassy polymer 
with the one predicted by a rheological model, 
previously proposed [ 1 ]. This model, qualitatively 
useful to describe tensile creep tests, interrupted 
tensile tests and to explain the yield drop, consists 
of a modified generalized Maxwell model having 
the following characteristics: 

(1) all the n elements include the same Hookean 
spring; 

(2) each element is characterized by an Eyring- 
type dashpot, the deformation of which may be 
neglected as long as the stress it bears remains 
smaller than a definite value ai (ai is strain rate 
and temperature dependent); 

(3) when at is reached on an element, its de- 
formation goes on under the action of a stress 
lower than oi. This condition, implied by inter- 
rupted tensile tests [1 ],  could mean that the onset 
of viscous deformation requires the destruction 
of some structure initially present in the polymer. 
That is, the spectrum Pi of the ai values is con- 
verted to another spectrum, Pd, possessiflg a 
smaller lower limit, amd. It is the assumption of 
the existence of two spectra characterizing the 
polymer deformation which allows a yield drop 
to be obtained in the response of the model. This 
response is calculated in Appendix 1. 

In order to take account of rather large de- 
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Figure 1 Proposed rheological model. 

formations occurring beyond the yield point 
in a tensile test, we have completed the model 
here by inserting in parallel a rubber elasticity 
spring, following Howard and Thackray [2] on 
this point. The proposed system is shown in 
Fig. 1. From the theory, a tensile test may be 
described by the following expression including, 
besides the rubber elasticity contribution OR, 
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two terms related to the viscous deformed 
elements and the coexistent elastic ones re- 
pectively: 

f e e  A 

a = o Omd EePd (Ee) dEe 

EeA [- Pi(Ee) dEe + OR (1) + 
A 

where a denotes the tensile stress corresponding to 
the deformation e A and E the resulting modulus 
of the Hookean springs. Equation 1 becomes 
quantitative if one knows Pi and Pa. The problem 
is to establish these spectra. There is no exper- 
imental data allowing a direct determination of 
Pi and Pd, but the spectrum Ps of a material whose 
initial structure has been destroyed prior to testing 
may be easily obtained. 

The tensile curve of such a structureless material 
may be expressed by Equation 1 where Pi and Pd 
are replaced by Ps. 

f 
e e  A 

o s = O~md EePs(Ee) dee 

+ EeA f ?  Ps(Ee) dEe + OR (2) 
A 

from which it can be derived that: 

d 2 as 
e,(Ee) - d(Ee)2 (3) 

From a test-piece of the material possessing an 
initial structure, we intend to obtain a sample 
of a structureless material and to determine Ps 
from the tensile curve of such a sample. A plausible 
law for building Pd as a function of Ps and de- 
formation is then assumed, while the expression 
for Pi is deduced from that for Ps by analogy. 
Under these conditions, the response of the model 
to a simple tensile test is calculated in order to 
check the validity of the proposed system and the 
hypothetical spectra. 

2. Experimental 
2.1. Materials 
Our tests were performed on two different forms 
of PVC (Trovidur, Dynamit Nobel) "as-received" 
and structureless. 

The shape of the test-pieces used was given else- 
where [3]. They were cut out of sheets 3mm 
thick. The structureless material was obtained as 
follows. We thought that the hypothetical structure 
present in the "as-received" material was of the 
same kind as that formed by annealing the polymer 
just below its glass transition temperature, Tg 
[4, 5]. Mills [6] and Adam et al. [5] have shown 
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that quenching or straining an annealed polymer 
beyond the yield point removes the effect of the 
annealing treatment. We thought that this structure 
might perhaps occur during the cooling of the 
polymer through its glass transition and we 
attempted to stop this happening. A test-piece of 
the "as-received" material was heated to about 
30~ higher than Tg in order to destroy the 
structure. Afterwards, it was slowly cooled and 
during the cooling continuously deformed in alter- 
nated bending in such a way that the structure 
could not be formed. Finally, the test-piece was re- 
shaped to its original dimensions. 

2.2. Stress-strain curves 
Stress-strain curves were measured in an Instron 
test machine at an imposed strain rate eo equal to 
4 x 10 -4 sec -t . All tests were conducted at room 
temperature. The extension was recorded using 
strain gauge extensometers of the Baldwin type as 
long as the deformation remained homogeneous 
(as is the case for the tensile curves given in Fig. 3). 
For larger deformations, necking occurred and 
spread along the test-piece, so we had to measure 
local deformation. For this purpose, 2ram 
equidistant marks were traced along the test-piece. 
The elongation of the portion where the neck 
formed was measured, on a base of 4ram, as a 
function of load and time, until the end of neck 
propagation. Therefore the stress-strain curve 
may be obtained entirely except in the small 
highly unstable region where the neck arises, 
inducing adiabatic heating even at low strain 
rates. 

2.3. Evaluat ion of  the  engineer ing stress 
The calculation of the Maxwell elements provided 
the true stress, o, while OR was evaluated in terms 
of engineering stress. The graphs are drawn in 
engineering stresses, full lines representing ex- 
perimental values, and dots the calculated ones. 
We used the following relationship between both 
types of stress, which is derived from consider- 
ations previously discussed [7] ; that is 

O 

%~g - 1 + e (4) 

3.  C h o i c e  o f  the  spectra  Pi and Pd 
The spectrum Ps may be easily obtained from the 
tensile curve of a test piece of the structureless 
material. Such a curve is given in Fig. 2. It does 
not exhibit a yield drop, a sign that the initial 



Figure 2 Tensile stress-strain curve of the structureless 
material and spectrum Ps derived from this curve. 
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structure is practically absent. Young's modulus, 
E, can be obtained as a best fit to the slope of the 
first part of the curve, as is given in Table I. The 
value of arnd, also given in this table, corresponds 
to the stress at which the curve first ceases to be 
linear. The spectrum derived from this curve 
using Equation 3 is given on the same figure. 
The shape of the right-hand-side leads us to 
approximate it by a decreasing exponential 
function given by; 

1 ( Ee -- Omdt, 
Ps - exp - - -  - (5) 

Ood aod ] 

where %d, given in Table I, is estimated from 
the mean value of the tangent at different points 
on the graph. 

We know nothing about Pd except that it equals 
Ps for rather large deformations at which the 
initial structure can be considered as destroyed. 
For this reason, we will assume the following 
relationship between both spectra, for e < eA ; 

Pd (Ee) = KE eA es (Ee), (6) 

where KEeA reaches unity for large deformations. 
The relationship of Equation 6 does not depend 
on the function chosen to approximate Ps and 
remains quite general. We have tried an expression 
analogous to that of Ps (Equation 5) to give an 
expression for Pt; 

Ee  - -  Orni] 
ei = ~ exp . (7) 

O'oi Ooi ] 

The value of Omi can be obtained from the tensile 

TABLE I Coefficients for structureless PVC 

E arn d r 
(kg ram- 2 ) (kg ram- 2 ) (kg ram- 2 ) 

285 0.8 3 

Figure 3 Comparison between the measured tensile 
stress-strain curves (full line) and the calculated response 
of the model (points). Curves (a) and (b) are related to 
the "as-received" and the structureless materials respect- 
ively. Deformations remain homogeneous throughout 
the test. 

TABLE II Coefficients for "as-received" PVC 

E Crmi Croi 
(kg ram- 2 ) (kg ram- ~ ) (kg ram- ~ ) 

285 3.6 7* 

*Optimized to adjust the maximum of the calculated 
curve to fit the experimental yield stress. 

curve of the material given in Fig. 3 (curve a, full 
line). Young's modulus was found to equal that of 
the structureless material. The constant Ooi was 
determined by adjusting by trial and error the 
calculated response of the model at the yield point 
with the experimental value of the yield stress. 
The three constants of Equation 7 are given in 
Table II. 

4. Resoonse of the model submitted to 
a tensile test 

4.1. Expression for the tensile curve for 
the structureless material 

In this case, the tensile stress can be calculated 
from Equations 2 and 5: 

Ood / J  

(8) 
4.2. Express ion  for  the  tensile curve  for  

the  mater ia l  in its initial s ta te  
To establish the expression for the tensile stress, 
we must make the law of transformation of the 
elastic elements to the viscous elements, in the 
course of deformation, more explicit. Let Ci be 
the fraction of the Maxwell elements which 
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exhibit viscous flow at a given value EeA. This 
fraction may be expressed as a function of Pi by: 

fJ Ne A 
q = JOmi Pi(Ee)dEe 

However, these Ci elements no longer belong to 
Pi but to Pd, therefore, from Equation 6, one 
obtains: 

C i i'Eeapd(Ee)dEe EeA E = = KEea~s e)dEe OOmd (9) 
and 

f EeA Pi (Ee) d Ee 
oral 

KEeA = (10) 
f~mAdPs(Ee)dEe 

If Pi and Ps are expressed by Equations 5 and 7, 
NEe A becomes: 

1 -- exp ( EeA_ ~ Omit 
Ooi / 

KEeA : 1 -- exp (. EeA--O'rad- t (11) 
o'~ / 

The resulting stress borne by these Ci elements 
may also be expressed as function of Ps. Finally, 
from Equations 1, 5, 7 and 11, we can write that: 

(_ Eenz~ t 
1 -- exp o.oi ] 

0 = X Ee a_--_Oma_l [ 1 l 

exp ~ o.od / 

~ EeA'E6 (Ee- -O 'md)  
- -  exp - dEe amd o'od Ood , 

-I -/s f 2 A e x p ( E e - - o ' m i )  
Ooi Ooi / 

: [ l - e x p  ( E 6 A  ~o'mi)] X O'oi 

O~ + Omd ~6" -- md 

exp 

EeA exp (-- EeA - -  emil+ OR- + 
\ Ooi / 

dEe + o.n 

(12) 

5. Choice of the rubber spring 
Instead of the Langevin spring, proposed by 
Haward and Thackray [2]: and,particularly con- 
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venient to describe very large deformations, we 
have chosen the following relation to express the 
rubber elasticity occurring at the level of strain 
we have considered: 

o R (kg mm- z) = 1-4 a -- x 

[1 +4"25 (3a3 + 4  )] 
14 \ 5~ 1 ,(13) 

with 

a = (1 + e). (14) 

The numerical values are calculated in Appendix 2. 
Equation 13 is the expression for the stress 

supported by an elastomer constituted by a non- 
Gaussian distribution of chains. This is a classical 
relation, given for example by K. J. Smith Jr [8]. 
The angle of rotation, ~, about the tetrahedral 
bonds of the chains was not restricted, so that 
< cos ~b > = 0, the front factor being taken equal 
to unity for the sake of simplicity. 

By trial and error, N, the number of backbone 
links per segment, was optimized to obtain a best 
fit with the experimental curve; the value of 
N =  14 was found. Of course, this is a rough ap- 
proximation because N and the front factor 
certainly change during the course of deformation. 
For this reason we have not considered too large 
deformations. 

6. Results 
6.1. Tensile curve for the structureless 

material 
This experimental curve is compared in Fig. 3 to 
the value of % calculated using Equations 8 and 13 
and Table I. As Ps approximates the spectrum 
derived from the same curve, the comparison is 
only given to show the validity of the approxi- 
mation chosen. 

6.2. Tensile curve for the "as-received" 
material (portion related to 
homogeneous deformation) 

A comparison between experimental and calculated 
curves from Equations 12 and 13 is given in Fig. 3. 
The accuracy of the fit is quite satisfactory. 

6.3. Tensile curves for the "as-received" 
material (portion related to the 
neck propagation) 

When deformation becomes inhomogeneous, local 
strain rate ceases to remain constant, The graph 
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Figure 4 Variation of the measured local deformation as a 
function of time. Measurements are made within the 
region of the test-piece where the neck occurs. 

representing the local strain variation as a function 
of time is given in Fig. 4. The comparison between 
the experimental tensile curve given in Fig. 5 (full 
line) and the response of the model requires a 
strain rate correction. 

We have previously [1] established a linear 
dependence between the ratio o/T, T being the 
absolute temperature, and the logarithm of the 
strain rate. The slope of the straight line giving 
this dependence was found to equal, for the as- 
received material, 

A = 7.35x 1 0 - 4 k g m m - 2 K  -1. (15) 

Points shown on Fig. 5 were therefore evaluated 
as follows. For a given value of e, say CA, eA is 
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Figure 5 Comparison between the experimental stress- 
strain curve related to local deformation where the neck 
occurs (full curve) and the response of the model (points)�9 
A strain rate correction has been made using Equation 16. 

calculated from the graph of Fig. 4. As the constants 
of Tables I and II are related to eo = 4 x 10 -4 
sec -1 , the value of OA corresponding to eA equals: 

aA = a + A T ( l n ~ A - - l n ~ o )  (16) 

where cr is calculated from Equations 12 and 13 
using the constants of Tables I and II. The results, 
shown in Fig. 5, give an accurate fit until rather 
large deformations. 

7. Conclusions 
The proposed model has been successfully applied 
to calculate the tensile stress-strain curve of a 
glassy polymer. The fit is accurate over the whole 
curve, except perhaps for very large deformations 
and for the highly unstable region where necking 
takes place. Only one parameter, i.e. aoi, has to 
be adjusted. 

The basic idea of the proposed treatment is that 
viscous deformation requires the destruction of 
a structure initially present in the material. That 
is to say, the model exhibits two spectra of 
Maxwell elements Pi and Pa, and Pi is converted 
into Pd during the course of  deformation. This 
paper is a first attempt to evaluate these spectra 
quantitatively; results are promising and may 
be considered as a first step towards the under- 
standing of the dependence of the structure of 
a polymer on the viscous deformation in the glassy 
state. 

Aopendix  1 
Response of the modified generalized 
Maxwell model 
It is assumed that the n elements of the modified 
generalized Maxwell model include the same 
Hookean spring E, and that the deformation of 
the dashpot belonging to a given element ] starts 
as soon as it bears the stress: 

c~i~ = T [A In ~ + Bij (T)] ,  (A1) 

while it goes on under the action of a lower stress 

oa/ = T [.4 hi ~ + Bd~ (T)] (h2) 

Subscripts i and d recall that Equations A1 and A2 
concern the initial and the increasing deformation 
of the dashpot respectively. The parameter A is 
kept constant; this means that the relationship 
between stress and strain rate is the same for all 
elements. 

The macrocoscopic stress o is the average of 
the stresses borne by the n elements: 
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a = ( t /n)  ~ a s (A3) 
j = ,  

The response of the model to a tensile test at 
constant strain rate may be expressed as a function 
of av, the macroscopic stress related to the 
elements having a strained dashpot, and aE, the 
macroscopic stress related to the elements having 
a strained spring only. For a given value eA of the 
deformation, l dashpots are strained, we may 
therefore write that: 

1 

~ = (i/n) y~ eas (A4) 
J = l  

and _n 
OE = eA/n) ~ Ej (A5) 

j = l + l  

By taking into account that Ej = E for all the 
elements, Equation A5 becomes 

aE = (I/n) EeA (n -- 1) (A6) 

while 

Oil  = T [A In e + B u (T)] = EeA (A7) 

Let us define the following functions: 

I; J 
Pd (Odj) l i ra  k ~ j k ~ O'dk = _ - - (AS) 

and 

Pi(oi l )  = lim k ~ j  O'U __ Oi k 

Pd and Pi are the distribution functions or spectra 
of the elements whose deformation is viscous and 
elastic respectively. 

Therefore, the stress borne by the model at a 
given deformation c A is: 

0 ---- O v + 0 E ---- rEeAodPd(Od)dOd 
-~Odl 

EeA ~ i e A  P i ( a i ) d a i  (AIO) + 

Since % ,  =Omd, Equation AIO reduces to 
Equation 1 if one replaces Od and o i by Ee and 
takes into account the rubber elasticity contri- 
bution OR 

Appendix 2 
R e s p o n s e  o f  t h e  r u b b e r  s o r i n g  

The relation given by K. J. Smith [8] may be 
written: 
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oR = ukTrl (c~ - 1/a 2) 

(A l l )  

where 77 denotes the front factor of Tobolsky, v 
the number of segments per unit volume, k the 
Boltzmann constant and T the absolute tempera- 
ture. 

For the calculations, we take 77 = 1 and 6 = - 
51/80N for < cos ~ > = 0, N denoting the number 
of backbone links per segment. Thus Equation 
A11 becomes: 

_ _ k T  { 4 . 2 5 { 3 a 3 + 4 _  5a- )} 
aR = ~Vo ( a - -  1/a 2) 1 +--~--~- 1 

(A12) 

where Nvo is the volume of a segment. 
Taking into account that: 

kT p R T  
- (A13) 

Nvo MN 

where R is the universal gas constant, p the 
specific weight (1.4gcm -3) and M half the mol- 
ecular weight of the monomer unit (32.25 g) one 
obtains at room temperature: 

kT/vo = 11 kgmm -2 (A14) 

Therefore, with N =  14, Equation A12 becomes 
identical to Equation 13. 
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